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Human Health Hazards Associated with
Chemical Contamination of Aquatic
Environment
by Jerry F. Stara,* Dinko Kello,t and Patrick Durkint

Giventhe nite supply ofwater available forhuman use, continued chemical contamination ofthe aquatic
environmentmay pose a significant human health hazard. Consequently, an effort must be made to develop
ambient water quality criteria to protect human health and preserve the integrity of the aquatic environ-
ment. In developng water quality criteria based on human health effects, information on sources of
exposure, pharcokicnetics, and adverse effects must be carefully evaluated. Information on sources of
exposure is needed to determine the contribution of exposure from water relative to all other sources.
Pharmacoinetic data are used in inter- and intraspecies extrapolation and in characterizing the mode of
toxic action. Information on toxic effects includes data on acute, subchronic, and chronic toxicity,
mutagenicity, teratogenicity, and carcinogenicity. In analyzing such information, a distinction is made
between threshold and nonthreshold effects. Currently, carcinogenicity and mutagenicity are considered to
be nonthresiold effects. For carcinogens and mutagens, criteria are calculated by postulating an "accepta-
ble" increased level of risk and using extrapolation models to estimate the dose which would result in this
increased level of risk. For other chemicals, thresholds are assumed and criteria are calculated by deriving
"acceptable daily intakes" for man which would presumably result in no observable adverse effects.
Neither process is exact, and attempts must be made to improve and verify risk assessment methodologies.

Introduction
The importance of assessing health hazards as-

sociated with chemical contamination of the aquatic
environment continually increases. There is an ur-

gent need to maintain water quality. The earth is a
closed system with finite resources (1). The total
amount of water on earth is estimated to be about
1500 million cubic kilometers, but 97.134% repre-
sents ocean waters while the remaining water is
captured as icecaps (2.225%), as glaciers (0.015%),
and groundwater (0.6%). Freshwater lakes contain
0.009%o, while rivers contain only 0.0001% of the
earth's total usable fresh water (2, 3). These sources,
along with a small amount of underground water,
represent all of the water that is available for human
use today.
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The level of technological development in indi-
vidual countries is the paramount reason for varia-
tions of water quality and its overall utilization. The
United States is a good example of excessive water
usage due to advanced technological development.
At the beginning of the century, water usage in the
U.S. was estimated at 500 gal/person daily (4). If we
could consider an identical population in 1970, this
amount has increased more than three fold, to 1800
gal. However, due to the increase in the U.S. popu-
lation, an eightfold overall increase of 50 to 400 bil-
lion gallons of water used daily has occurred over
that time period (4, 5).
Based on an estimate by Doxiadis in "Water for

Peace" concerning yearly worldwide demand for
water per capita, the U.S. population will use three
times as much water as the rest of the world popula-
tion by the year 2000 (5, 6). Even more dramatic
increases in the use of water could be expected on a
global scale during the next decade. Rapid
technological development of the underdeveloped
nations due to additional hygienic and industrial re-
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Table 1. Point source pollution by region: 19771

Percentage affected by type of sourceb
Number

of Combined sewer
Region basins Industrial Municipal overflow

Northeast 40 95 95 60
Southeast 47 74 91 17
Great Lakes 41 80 95 37
North Central 35 74 86 6
South Central 30 70 100 0
Southwest 22 23 64 0
Northwest 22 55 73 14
Islands 9 89 100 0

Total 246 72 89 20

aData of U.S. Environmental ProtecLion Agency (8).
bInl whole or in part.

quirements will be the largest factor in increasing the
demand for water. As a result, in the year 2000 the
total water demand each year is estimated to be
approximately 6500 cubic kilometers, still far below
the available amount of water on earth (3, 6). Yet,
because of the increasing pollution of waterways by
chemical compounds from industrial and municipal
sources, we must manage our water resources care-
fully. The price of technological progress is under-
lined by recently published data which demonstrated
that in the U.S., 72% of all water basins are contami-
nated by industrial pollutants (7). The Northeast and
the Great Lakes regions are affected most; 88% of
the water basins are polluted, as compared with 65%
in the other areas of the nation (Table 1). In the
Southwest 23% of the water basins were shown to be
polluted by industrial discharges. In many instances,
the specificity of pollution is directly related to geo-
graphic location. For example, in the Northeast,
Great Lakes, and North Central regions, where
heavy industries are located, effluents containing
high concentrations of toxic metals and specific or-
ganic chemicals are more common. The monitoring
surveys in these areas identified heavy metals in 55%
ofthe water basins and other toxic pollutants in 40%.
These values compare with 23% and 15%, respec-
tively, for the rest of the country.

Scientific investigations identifying effects of or-
ganic chemicals in drinking water have only in-
creased significantly during the past few years, even
though carcinogenic substances in industrial waste
discharged into rivers and lakes were reported more
than 20 years ago by Middleton and Rosen (9),
Hueper and Conway (10), and others (11). More
recently, a number of carcinogenic substances were
identified in chlorinated municipal sewage effluents
(12). Pollutants from industrial effluents and munici-
pal sewage contaminated water supplies on a con-

tinuous basis. Dumping and accidental spills have
polluted waters on an intermittent basis, also con-
tributing significantly to the pollution levels of water
basins (13). Furthermore, various monitoring studies
have identified the presence of carcinogens in
treated municipal drinking water (14-18). Prelimi-
nary epidemiological data from Louisiana, Ohio, and
New Jersey indicate that water polluted by organic
chemicals from industrial, municipal, and agricul-
tural sources contains a large number of potential
carcinogens. Although the measured levels have
been rather low, they have been shown to be in-
creasing over the past 25 years. Unless appropriate
control technologies are used, it is entirely possible
that the increasing level and number of hazardous
chemicals in water will result in significantly in-
creased health risks to the population (19, 20). Evi-
dence of the constantly increasing numbers of
chemicals in water and the resulting potential hazard
to public health, has been clearly documented.
As a part of the Toxic Substances Control Act, the

EPA has been charged with maintaining an inventory
of chemical substances manufactured, imported or
processed in the U.S. for commercial purpose (21).
The EPA has contracted with American Chemical
Society Abstracts Service (CAS) to process all the
reports and to create and maintain a file on all chemi-
cals and their manufacturers. To date, according to
CAS, scientists have identified more than 4.3 million
chemicals. The report stated that the number of
chemicals in the world register has been growing at
an average rate of about 6000 per week. Further-
more, it was estimated that, not including pesticides,
phannaceuticals, and food additives, more than
50,000 chemicals are marketed and are in everyday
use (21). Approximately 63,000 chemicals are used
commercially today. Of the newly registered chemi-
cals, approximately 1000 new compounds enter the
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marketplace worldwide each year; 300-700 of these
in the United States alone.
Improved analytical techniques have allowed the

detection of reported carcinogenic contaminants at
lower (microgram) levels. Kraybill (22) has pub-
lished a comprehensive review on the global dis-
tribution of carcinogenic pollutants in water. From
his report it is clear that the use ofmodern techniques
such as gas-liquid chromatography and mass spec-
trophotometry has improved significantly the iden-
tification process of organic chemicals in water. As a
consequence, we are constantly accumulating evi-
dence that man is chronically exposed through in-
gestion of water to many more chemical agents than
we were able to identify originally. Even though the
exposures are at extremely low levels, it is possible
that an increase ofdetrimental biological effects may
be reported in the future. Further conclusive tox-
icologic and epidemiologic evidence is needed be-
fore many suspected compounds can be proven
hazardous to man at the levels presently encoun-
tered. These data are urgently needed for the ap-
propriate regulatory actions.
Although this paper will focus on the development

of ambient water criteria to protect human health,
the principles used are similar to those encountered
in evaluating potential effects on aquatic life. Both
human and aquatic health assessments involve ex-
trapolating results of observable responses in test
species to projected or acceptable levels in the spe-
cies of concern (target species). Although the princi-
ples of extrapolation are similar in both types of risk
analysis, certain practical differences between
human and aquatic risk assessment exist and should
be appreciated. In terms ofthe target species, human
health hazard assessment attempts to convert a risk
from various mammalian species to only a single
species, Homo sapiens. Aquatic hazard assessment
is concerned with the effect of xenobiotic stress in
aquatic communities, groups of species interacting
by mechanisms which are neither readily quantified
nor clearly understood. In this respect, ecological
hazard assessment is more complex than human
hazard assessment. However, since society is un-
derstandably most concerned with human health,
the level of acceptable risk is usually much lower in
human risk assessment than in aquatic risk assess-
ment. Consequently, the degree of high-to-low dose
extrapolation is usually much greater in studies de-
signed to detect human risk. Perhaps most impor-
tantly, human hazard assessment is usually based on
studies using animal species that are not closely re-
lated to humans, such as rats or mice. In aquatic risk
assessment, data are sometimes available on test
species which are closely related or identical to
target species. Given the multiplicity of species in-

volved in ecological hazard assessment, the
uncertainties of high-to-low dose and experimental
mammal-to-man extrapolation involved in human
hazard assessment, it is often extremely difficult to
develop a sound hazard analysis (23). Consequently,
it is incumbent on both mammalian and aquatic tox-
icologists to work closely together to clarify and
improve risk assessment methodologies within their
own disciplines.

Scientific Basis for Risk
Assessment in Man
The objective of health effect assessments, which

form a basis for water quality criteria, is to estimate
ambient water concentrations which would protect
the public health. Ideally, the criteria should repre-
sent levels for chemical compounds in ambient water
which would not pose any hazard to the human
population. However, in any realistic assessment of
human health hazards due to environmental chemi-
cals, a fundamental distinction must be made be-
tween absolute safety and acceptable risk. Criteria
for absolute safety would have to be based on de-
tailed knowledge of dose/response relationships in
humans including: all sources of chemical exposure
from the various environmental media, the types of
toxic effects elicited due to specific pollutants or
their mixtures, the existence or nonexistence of
"thresholds" for specified toxic effects, the signifi-
cance of interactions (synergistic or antagonistic),
and the variances of sensitivities and exposure levels
within the human population.
Rall (24) and many others have used the famous

quote by Alexander Pope: "The proper study of
mankind is man." Obviously, the best data for es-
timating human risk are obtainable only from man.
However, humans cannot be used directly as ex-
perimental subjects for toxicologic evaluation of
carcinogens and other hazardous substances for ob-
vious sociological, medical-ethical and legal rea-
sons. Therefore, lower mammals and other biolog-
ical systems must be used. The results are then
extrapolated to evaluate as closely as possible the
risk in human populations. Consequently, those in-*
volved in risk assessment programs must extrapolate
interspecies, from the rather limited knowledge of
effects in animal systems to unknown effects in
another species (human). They must deal, at the
same time, with many additional difficult intra-
species factors that occur. Available results usually
demand extrapolation from limited data on small
groups of animals exposed to high dose levels for
short periods of time to human populations exposed
to low levels ofenvironmental agents over prolonged
periods (25). Even the extrapolation process from
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human clinical studies, which bypasses the in-
terspecies extrapolation problems, presents many
difficulties because the data points are usually avail-
able for only a few human subjects, who are often ill
and under medical treatment for a different reason. It
is difficult to project such data to the U.S. population
of over 200 million people. On the other hand,
epidemiologic studies of larger populations almost
always lack dose-effect relationship data. In prac-
tice, definitive criteria derived directly from human
subjects can seldom be established because of de-
ficiencies in available information and in the techni-
cal means of data interpretation. As a consequence,
extrapolation methods from animal data and various
statistical methods need to be uised to derive health
effect criteria which may estimate the minimal or
specified risk of chemical substances in ambient
water to man.

In order to develop a comprehensive approach to
health hazard evaluation of chemical contaminants
in ambient water, it is necessary to collect and clas-
sify all available and pertinent information on the
subject (26). Sufficient conclusive data are, how-
ever, seldom available for most contaminants of
water. In a majority of cases there is a paucity of
relevant data, and scientific judgment as well as pol-
icy decisions must play a role in establishing accept-
able levels ofpopulation exposure. The minimal data
base for this purpose should include information on:
sources of exposure which reviews available
monitoring data of present levels of hazardous
agents in the aquatic environment; pharmacokinetic
data on the agent, including all available metabolic
data in humans and experimental animals; and dose-
related adverse effects reported in man and other
biological systems.

Sources of Exposure
The exposure section should contain all available

monitoring information of the current levels of
human exposure to the individual pollutant from all
sources, including ambient water. The major pur-
pose of this section is to provide background infor-
mation on the contribution of exposure from water,
relative to all other sources. Consequently, this sec-
tion is subdivided into exposure from ingestion in
water, ingestion in food, inhalation, and dermal
contact.

Evaluation of the present population exposure is
an extremely valuable part of the approach for the
development of water quality criteria. Man can be
exposed from daily consumption of water as well as
from ingestion of contaminated aquatic organisms,
each factor contributing to the total exposure. For
this purpose, certain assumptions must be made.

The most appropriate approach is the use of reviews
and recommendations of scientific committees and
organizations, such as the NAS monograph on
drinking water and health (26). The U.S. Environ-
mental Protection Agency, for example, has re-
cently, under a court order, formulated criteria for 65
chemicals identified as water pollutants (27). Useful
assumptions taken from the NAS publication con-
cern human daily exposure for criteria calculations.
Average ingestion of 2 1./day of water over a lifespan
of 70 years was used as proposed by the NAS com-
mittee (26). The average consumption of specified
fish and shellfish products was estimated to equal
18.7 g/day (28). The consumption of fish products is
an important exposure factor; it requires a satisfac-
tory estimate of the amount of pollutant residue in
the edible portion of the ingested aquatic organism.
Bioconcentration factors are used to quantify the
pollutant residue in aquatic products of the chemical
in ambient water in which the organism lives. This
factor has a direct influence on the determination of
the final criteria level, especially if the bioconcen-
tration factor is large.

In general, knowledge of exposure from all
sources is needed in recognizing the contributions to
total body intake from all exposure routes.
Additional information relative to special population
groups at risk, based on unusual individual suscepti-
bility or unusually high levels of exposure in specific
segments of the population must also be given con-
sideration. Most importantly, the relationship be-
tween present levels of exposure to ambient water
contaminants and the calculated criteria must be
carefully evaluated to determine if a human health
hazard exists.

Pharmacokinetics
Data on the pharmacokinetics of environmental

pollutants in humans and experimental mammals are
extremely useful in inter- and intraspecies ex-
trapolation, especially in assessing the magnitude of
body burden from long-term low-level exposures,
and in characterizing the mode of toxic action (29).
Information on absorption and excretion in animals,
together with a knowledge of ambient concen-
trations in food and water, may be used to determine
body burdens of chemicals in man. Distribution data
are of great importance in determining target organs
or tissues. They may provide supportive evidence
for the validity of species-to-species extrapolation.
For instance, if an agent has been shown to have
similar distribution in both experimental animals and
humans, the toxicity data can be extrapolated to
humans with much greater confidence (25). Deter-
mination of the metabolic pathway and eventual fate
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of the test chemical is important in assessing a po-
tential additional health impact of chemical com-
pounds since metabolites may exert a greater toxic
effect than the original agent (30). Finally, the
knowledge of the rate of excretion and the resulting
biological half-life may also have a bearing on the
biological effects of the agent.

Effects
Toxicological evaluation of environmental pollu-

tants is based on qualification and quantification of
the observed health effects in humans and ex-
perimental animals. In an attempt to organize the
magnitude of various toxic manifestations, the sci-
entific community (29, 31) has established the fol-
lowing classifications of effects: (1) acute, sub-
chronic and chronic toxicity; (2) mutagenicity; (3)
teratogenicity; (4) carcinogenicity. Technically, all
four groups of effects are "toxic." The main differ-
ence between acute, subchronic, and chronic tox-
icity and the other three categories is that the latter
three, namely, mutagenic, teratogenic and car-
cinogenic effects may involve the genetic system.

In terms of the magnitude of hazard, all adverse
effects may be divided into transient/reversible or
persistent/irreversible. The National Academy of
Sciences Safe Drinking Water Committee (26) de-
fines a "reversible" effect as one which disappears
after exposure ends, i.e., within a timespan that
comprises only a small fraction of the organism's
lifetime. The concept of reversibility implies that
there is a no-effect level or that there exists a dose
below which human health will not be compromised.
"Irreversible" effects can be divided into two cate-
gories based on severity. In the first group, the ad-
verse response either does not regress completely or
progresses after exposure ceases. The second group
of irreversible harmful changes can be defined as
those that are likely to be life threatening even after
exposure has ceased. It includes terata, malignant
tumors, mutations in offspring of exposed animals,
and some neurological changes. Although irreversi-
ble effects usually pose the greatest risk to human
health, a frequently recurring reversible effect may
result in as high or higher mortality than irreversible
effects which appear later in life.

Toxic Effects
Toxic effects are classified as acute, subchronic,

or chronic, based on duration and level of exposure.
The quantitation of the lethality of substances is an
established approach in classical toxicology and rep-
resents the first critical step in the health assessment
and safety evaluation of chemicals. Acute toxicity

data provide the initial ranking of chemicals as to
their potential toxicity and serve as a basis to estab-
lish critical dosage range for the subchronic and
chronic tests at lower doses, including the "no ob-
servable adverse effect levels" (NOAEL) (25). Ad-
ditionally, the acute tests may provide initial gross
physiological and pathological evidence of toxicity
for structurally similar chemical compounds and
identify the target organs or tissues of the com-
pounds (29). Even though acute lethal effects have
limited usefulness in hazard assessment, in many
instances only acute data are available on a number
ofchemical contaminants. Regulatory agencies must
evaluate and classify all toxicity data in an attempt to
develop risk estimate and pollution control
strategies. A constantly increasing number of scien-
tific panels and committees have outlined specific
procedures for acute testing (26, 29, 32). Attempts
have been made by scientists (33, 34) to project from
short-term acute test data the potential of a sub-
stance to produce chronic low level effects.
Subchronic toxicity testing is performed to es-

tablish the nature of the toxic effects, including
metabolic behavior of the substance, its bioconcen-
tration, and its retention time in the body. Sub-
chronic testing should provide data to estimate the
maximum "no-effect" level and the minimum toxic
dose (MTD), as well as pharmacokinetic parameters
(25, 29). They are more relevant for characterization
of the physiological and pathological lesions caused
by the agent under test. The duration of subacute
studies varies from days to months. The general
approach recommended for these intermediate tests
is a period of about 10% of the test animal's lifespan,
i.e., 90 days for a rat living 30 months, 7 years for a
human with a 70-year life expectancy (35). The dos-
ing pattern for subchronic toxicity testing should
include a dose which will not produce demonstrable
effects, and at another end of the range one which is
expected to produce a frank toxic, but not lethal,
response as well as several (usually two or three)
intermediate doses. The "frank effect" dose has
often been found to fall between 10 and 25% .of the
LDso, depending usually on the slope of the acute
dose response curve (29, 34). The results of sub-
chronic tests are used to determine the desirability of
conducting chronic studies and they provide a nec-
essary background for the proper design of these
studies.
Chronic Studies. The decision to initiate a

long-term low-level toxicity study in experimental
animals must be based on several factors (25, 29, 31).
The selection of an agent must include a detailed
evaluation of environmental persistence, level of
contamination, and ubiquity of the substance to be
tested; and further, a selection cannot be satisfacto-
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rily made without adequate acute and subchronic
data. If available, two approaches are used to
evaluate the human effects of long-term low-level
exposure to environmental pollutants: (1) epidemi-
ological studies in humans, and (2) long-term ex-
periments on animals exposed to well-defined low
levels of the agent (26). Currently, chronic exposure
in animals is generally considered to require at least
half the animal's lifespan. However, because of the
vast differences in lifespan between humans and ex-
perimental animals, chronic tests should be con-
ducted over the animal's entire lifespan which will
maximize the possibility for appearance and obser-
vation of adverse effects.

Teratogenicity. Teratologic research has been
given great emphasis only after Lenz (36) and
McBride (37) reported the appearance of severe
malformations in newborn infants following admin-
istration to the pregnant mother of a presumably
harmless sedative, the hypnotic drug, Thalidomide
(38). Although teratogenic and other reproductive
effects are receiving increasing attention by scien-
tists and regulators, teratogenic effects in man at-
tributable to environmental contamination have not
been thus far documented.
One of the problems with teratogenicity studies is

the failure to clearly distinguish fetal teratogenicity
from embryonic lethality and fetal toxicity (39). A
teratogen is defined as a compound that "causes
structural or functional birth defects." Fetal toxicity
is essentially measured by the reduction in fetal
growth. Embryolethality is represented by the
number of resorptions and abortions representing
fetal deaths. One of the most important factors in
teratogenicity studies is the observation of the re-
lationship between maternal toxicity and fetal tox-
icity (40).
Even when these distinctions are maintained, dif-

ficulties with experimental design remain. As with
most biological studies, adequate numbers of ani-
mals must be used to permit valid analysis (41). In
this regard, primates are often prohibitively ex-
pensive and not easily available in sufficient num-
bers. Consequently, most teratogenic studies utilize
rodents. Such studies usually must involve at least 20
pregnant females per dose level and always use the
litter as the experimental unit. The chick embryo is
not highly regarded as a good model for the estima-
tion of teratogenic risk of chemicals to humans be-
cause the yolk sac is a closed system which accumu-
lates chemical substances with a long residence time.
As test systems improve to predict potential human
teratogens, this biological endpoint is likely to prove
of greater significance in estimating human health
hazard (39).
Mutagenicity. The use of screening methods (in

vitrolin vivo combination systems) in qualitative
toxicological testing has increased in importance in
recent years. Various approaches have been rec-
ommended in the literature to use available screen-
ing techniques singly or in a battery of tests for
preliminary evaluation of chemicals for their muta-
genic and carcinogenic potential before expensive
long-term bioassays are initiated (29, 31, 42). The
Food and Safety Council (29) in their recent report
listed three objectives in mutagenic assays of chemi-
cal compounds: (a) does the chemical have the capa-
bility to induce heritable genetic effects in man, (b)
can the risk of the agent on mutagenic potential in
man be quantitated and (c) can the data derived from
mutagenicity tests be used for the prediction of toxic
effects in vivo, specifically, the induction of cancer.
They suggest a test battery in vitro and in vivo such as
(1) assays for induction of point mutations using
microbial and mammalian cell tests, incorporating in
vitro activating system; (2) tests for induction of
chromosomal changes; (3) assays for induction of
unscheduled DNA synthesis and/or DNA repair in
mammalian cells; (4) tests for induction of point mu-
tations by host mediated assay using microbial or
mammalian cell systems as indicators; (5) testing of
body fluids using microbial indicator systems; (6)
tests for in vivo induction of chromosomal changes
by direct cytogenetic analysis of metaphase; (7)
micronucleous tests; (8) dominant lethal tests; (9)
assay for cell transformation using in vitro cultured
mammalian cell lines. The committee has also out-
lined criteria forjudging a substance to be a mutagen.
They suggest that if any in vivo tests in the intact
animal or any two of the in vitro tests are positive,
then a substance must be considered a mutagen and
further, that such results indicate a need for long-
term in vivo testing for carcinogenicity (29).

Presently, for a satisfactory evaluation of the car-
cinogenic hazard ofchemical compounds, the testing
cannot be based on short-term mutagenicity nor on
in vitro carcinogenicity data, but only on an appro-
priate bioassay in experimental animals. The in-
terpretation of short-term mutagenicity assay data is
a complex matter, and thus far the decision whether
a chemical presents a mutagenic risk to man based on
these test results is not possible (26).

Carcinogenicity. For both societal and scientific
reasons, carcinogenicity is at the present time the
biological endpoint of greatest concern in environ-
mental hazard assessments. The emotional/
psychological primacy of cancer has obvious roots.
Cancer is the second major cause of death and suf-
fering in this country. Few families are left un-
touched by this wasting, irreversible disease. Al-
though there may be many other causes of cancer,
such as viruses or unavoidable exposure to natural

Environmental Health Perspectives150



compounds or physical agents, epidemiologic stu-
dies have clearly demonstrated the ability of chemi-
cals to induce cancers in humans. Scientifically, the
concern for cancer focuses on the concept of
"threshold." Several reputable scientific bodies
have concluded that there is no scientific basis for
assuming a threshold or no-effect level for genotoxic
chemical carcinogens (26, 29, 43, 44). This stems
from the hypothesis that each molecule of a carcino-
gen can interact with DNA and that this interaction
can result in development of a malignant growth.
Thus, it is generally accepted that any level of
exposure to a genotoxic chemical carcinogen will
increase the incidence of cancer in the exposed
population. Thus, while all cancers are certainly not
attributable to the chemical contamination of the
environment, there is ample reason for concern and
to control contamination of water supplies by
effluent chemicals.
Although the problem is real, it is difficult to ana-

lyze both qualitatively and quantitatively. An ap-
proach must be developed to determine ifa chemical
poses a carcinogenic risk to man and a further at-
tempt must be made to quantify this risk. In order for
scientists to exercise their bestjudgment, three types
of data should be used to make a reasonable determi-
nation of carcinogenicity: (1) in vitro tests for muta-
genicity, (2) human/epidemiological studies, and (3)
mammalian bioassays (43, 45). As indicated in the
previous section, in vitro tests for mutagenicity can
be useful in demonstrating direct genotoxic effects
and may serve as useful screening tests for potential
carcinogenicity. Direct application of such data to
human risk assessment is, however, an inconclusive
process given our current understanding ofchemical
carcinogenicity. Epidemiologic studies can directly
indicate that a compound poses a carcinogenic threat
to humans; however, the utility of these studies is
limited because they most often do not involve
satisfactory dose/response information. Therefore, a
qualitative determination of carcinogenicity to hu-
mans can be made from such studies, but a quantita-
tive estimate of risk is often impossible (25, 26). The
use of mammalian bioassays for carcinogenicity rep-
resents the most satisfactory approach to human
hazard assessment, although difficulties are en-
countered. On the positive side, mammalian bioas-
says involve the exposure of organisms similar in
some respects to man to defined dose levels under
controlled conditions. On the negative side, two
major issues must be always resolved: intraspecies
extrapolation from high to low dose levels and in-
terspecies extrapolation of data from lower mam-
mals to man. Although these problems are by no
means trivial, mammalian bioassay data are the
major source ofinformation on potential human risk.

Increasing Dose or Exposure
FIGURE 1.

With some exceptions, compounds which are car-
cinogenic to humans are also carcinogenic to ex-
perimental mammals. Since the converse cannot be
unequivocally demonstrated, a major effort must be
made to verify or develop improved methods for the
extrapolation of mammalian data to man.

Extrapolation and Risk Assessment
To extrapolate, as defined by Webster (46), is "to

project, extend, or expand known data or experience
into an area not known or experienced so as to arrive
at a usually conjectured knowledge of the unknown
area by inferences based on an assumed continuity,
correspondence, or other parallelism between it and
what is known."

In risk assessment, this process entails postulating
a biologic reality based on observable responses and
developing a mathematical model to describe this
reality. The model may then be used to extrapolate to
response levels which cannot be directly observed
but which represent acceptable risk. Figure 1, from
Gehring (47), illustrates some of the models which
have been used in high-to-low dose extrapolation.
The solid portion of the curve with its data points
represents the observable dose-response relation-
ship. At low levels of response which are directly
relevant to human hazard assessment but which are
not directly observable in animal bioassays, the
shape of the dose response curve is uncertain. As
discussed previously, there are reasons to suspect
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that genotoxic carcinogens will elicit nonthreshold
responses so that the dose-response curve will reach
zero response only at zero dose (curved dashed line
in Fig. 1). Thus, various nonthreshold models have
been developed to describe the dose-response re-
lationship for carcinogenic chemicals. Some scien-
tists contend that because of repair and detoxifica-
tion mechanisms (48), certain effects will evidence a
real or least practical threshold (49). This type of
assumption is illustrated in the two lines which inter-
cept the horizontal axis in Figure 1. The debate over
the concept of threshold/nonthreshold responses
and the different types of mathematical models
which can be used to describe these concepts ad-
dresses one of the most crucial questions in hazard
assessment today (48, 50-53).

In addition to high-to-low dose extrapolation, the
extrapolation of data on experimental mammals to
potential human hazard is a major difficulty in risk
assessment (25, 53). Because epidemiologic studies
cannot usually be used to derive criteria and studies
in higher mammals are often prohibitively expen-
sive, human risk assessments are usually based on
experiments using rodents. Although there are many
common features within the mammalian class, dif-
ferences in xenobiotic metabolism, life span, body
weight, gestation period, spontaneous disease rates,
as well as a variety of anatomic, physiologic, and
biochemical parameters make direct species-to-
species extrapolation difficult. For example, in sev-
eral National Cancer Institute bioassays (45) it was
found that some chemicals demonstrate car-
cinogenic activity in mice but not rats. Further,
many strains of mice appear to be particularly sus-
ceptible to the development of liver tumors from
chemicals which have no apparent carcinogenic ac-
tivity in other species or organs. Consequently, the
importance of liver tumor induction in mice may be
questioned and a systematic effort must be made to
evaluate the significance of such tumors to human
risk assessment.

Criteria Derivation
Because of the uncertainties involved in extrap-

olation and risk assessment, the regulatory agencies
face a serious dilemma. An absolute estimate of
chemical hazard cannot be made. Nonetheless, there
must be some attempt to reasonably approximate
risks posed by chemical contamination of our envi-
ronment. The alternatives, i.e., no regulation or an
absolute ban on chemical contamination, are unac-
ceptable.

In deriving water quality criteria, the EPA has not
solved these problems but has attempted to make
policy decisions based on a reasonable interpretation

of scientific data and principles (27). For carcino-
gens, mutagens, and in some cases, teratogens, a
nonthreshold assumption was adopted. Conse-
quently, "safe levels," i.e., levels which will pro-
duce no adverse effects, were not established. In-
stead, water quality criteria for these compounds
were based on levels which would presumably cause
a specified increase in incremental risk to the ex-
posed population. For all other compounds, a
threshold assumption was adopted. In these cases,
criteria were derived which would presumably cause
no increase in risk and would represent "safe" levels
in water. Both procedures involve calculating an
"acceptable" daily dose and partitioning this dose
between direct exposure from drinking water and
indirect exposure through contaminated fish.
The decision to establish a criterion based on a

non-threshold assumption was usually made by
evaluating information on carcinogenicity and muta-
genicity. In general, any chemical which was dem-
onstrated to cause a significant increase in malignant
tumors in laboratory mammals was treated as a car-
cinogen, and a criterion based on a nonthreshold
assumption was derived. Each carcinogenicity study
was carefully evaluated in terms of the experimental
mammal tested, the number of animals at each dose
level, dose-effect relationships, pathology, route of
exposure, duration ofexposure, observation period,
and adequacy of control groups. All other factors
being equal, studies using oral routes of administra-
tion (food, water, or gavage) were given preference.
The effects of various experimental factors in the
derivation of water quality criteria based on the
nonthreshold assumption are detailed below. When
results obtained from well-designed carcinogenicity
bioassay data were equivocal, other data were used
in assessing the appropriateness of establishing a
criterion based on carcinogenic effects. Such data
sometimes included mutagenicity and epidemiology
studies and/or any information on carcinogenic po-
tential of structurally related chemicals or metabo-
lites. The weight of evidence permits a qualitative
judgement concerning carcinogenic potential of a
compound.
The nonthreshold assumption was applied by use

ofhuman epidemiologic or experimental mammalian
data for the "one-hit" model recommended in the
EPA's Interim Cancer Procedures and Guidelines
for Health Risk and Economic Impact Assessments
of Suspect Carcinogens (54). The basic dose re-
sponse model is

P = 1 - exp {-BD} (1)
where P is the probability of getting an observable
case of cancer in a lifetime because of exposure to a
daily dose D of the compound, and B is a constant
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determined by the data. The quantity B is the only
parameter in the model, and it is interpreted as a
quantitative indicator of the carcinogenicity of the
compound. At low doses (low enough so that
P < 0.1),P is directly proportional to the doseD and
B is the slope of the dose-response line obtained
when P is plotted against D. Because the model
approximates a straight line through the origin at low
doses, it is sometimes called a linear, nonthreshold
dose-response model. It implies that any exposure to
a carcinogen, however small, results in some chance
of cancer occurrence, and the probability (or the
risk) of getting cancer from low exposure increases
linearly with the dose.
EPA is aware that other models for risk extrapola-

tion exist and have been used by EPA under other
regulatory programs, as well as by other Federal
agencies. The "one-hit" model has recently been
endorsed by the four agencies in the Interagency
Regulatory Liaison Group (43). It is one of the most
conservative models available, since it is less likely
to underestimate risk at the low doses typical of
environmental exposure. Because of the uncertain-
ties associated with high-to-low dose and animal-to-
human extrapolation and other unknown factors,
and because of the serious public health conse-
quences that could result if risk were underesti-
mated, the EPA believes that it is prudent to use
conservative methods to estimate risk in the water
quality criteria program.

Several modifications of the basic "one-hit"
model are made in developing water quality criteria.
The specific equation used to derive water quality
criteria is

(dle/Le) (Le/L)3 WH(RL)
CR =

- ln [ (1 - Pt) 1 - PA)] (WH/WA)3 [WC +(RF)]
(2)

where CR = water quality criteria (in mg/l.), d =
dose (in mg/kg/day) le = length ofexposure (in days),
Le = duration of experiment - surviving animals
sacrificed at termination, L = expected lifespan for
test animals, WH = human body weight (in kilo-
grams; assume 70 kg), RL = additional risk over
lifetime, Pt = proportion of test animals with tumors,
P= proportion of control animals with tumors,
WA = average weight of test animals (in kilograms),
Wc= daily water consumption (assume 2 liters),R =
bioconcentration factor for edible portions of fish,
F = average weight of fish consumed per day (in
kilograms; assume 0.0187 kg).

This model estimates the concentration of a com-
pound in ambient water which would be associated
with a specified increased lifetime risk of a 70 kg
human developing cancer from daily drinking 2 liters
of contaminated water (26) and consuming 18.7 g of
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fish taken from contaminated waters (28). Each
document in which criteria based on carcinogenic
effects are derived presents calculations for a range
of risk levels (10-7 to 10-5) as well as criteria which
include and exclude fish consumption (27).
As indicated in Eq. (2), the estimates of fish con-

sumption and the bioconcentration factor can have a
major effect on the criteria. The consumption esti-
mate of fish and other aquatic organisms was based
on the recent data compiled by Cordle and co-
workers (28) and divided into four categories: fresh-
water fishes, saltwater fishes, molluscs, and de-
copods. Three different procedures were used for
estimating the bioconcentration factors depending
upon the availability of bioconcentration data for the
edible portions and the lipid solubility of the chemi-
cal (55).
For those compounds which were not reported to

induce carcinogenic effects or for those compounds
on which carcinogenic effects data were lacking or
insufficient, the threshold assumption was applied.
In so doing, an attempt is made to define a "no
observable adverse effect level" (NOAEL). In many
respects, the evaluation of studies used to derive a
NOAEL was similar to that ofcarcinogenicity bioas-
says. In order to approximate more closely the con-
ditions of human exposure, preference was given to
chronic studies involving oral exposures (dietary or
in water) over a significant proportion of the or-
ganism's life span. Greatest confidence is placed in
those studies which demonstrated dose related ad-
verse effects as well as no effect levels. Considerable
variability was encountered in the biological end-
points used to define NOAEL values which ranged
from gross effects such as mortality to more subtle
changes in biochemical, physiological, or pathologi-
cal parameters.
The NOAEL was transformed into an Acceptable

Daily Intake for man (ADI) by dividing by an
uncertainty factor of 10, 100, or 1000. The guidelines
for using the uncertainty factors, as given by the
National Academy of Sciences (26), are outlined
below:

1. Valid experimental results from studies on
prolonged ingestion by man, with no indication
of carcinogenicity: Uncertainty Factor = 10

2. Experimental results of studies of human in-
gestion not available or scanty (e.g., acute ex-
posure only); valid results of long-term feeding
studies on experimental animals or in the ab-
sence ofhuman studies, valid animal studies on
one or more species; no indication of car-
cinogenicity: Uncertainty Factor = 100

3. No long-term or acute human data; Scanty re-
sults on experimental animals; no indication of
carcinogenicity: Uncertainty Factor = 1000
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For a few of the chemicals or chemical classes,
ADI values were estimated from threshold limit val-
ues (TLV) or subacute/acute mammalian data. The
TLV values are established by the ACGIH and rep-
resent estimated levels of the compounds in the work
environment which are not anticipated to result in
significant adverse health effects in workers exposed
8 hours/day, 5 days/week. The method used to derive
the ADI from TLV is essentially that recommended
by Stokinger and Woodward (56) and is based on
assumptions of the breathing rate and completeness
of absorption.
Once an ADI is established, assumptions are made

concerning the relative contribution of water to total
human exposure. Criteria are calculated in a manner
analogous to that used in carcinogenicity studies:

C = ADI/WC + (RF)

For all compounds, criteria used were based on an
assumed daily water consumption of 2 liters.

Examples of Proposed Criteria
Based on the previously described methodology

for health risk assessment, criteria for ambient water
can be derived as long as a sufficient data bhase exists.
Examples of the derived criteria are presented in
Tables 2-7 and are based on the different methods
used in the treatment of the data which provide the
basis for evaluation of effects. The presented ex-
amples of criteria levels are preliminary and de-
signed to inform the reader of the approaches used.
Public review of the documents is underway, and,
based on the public comments, it is likely that many
of the proposed criteria will be revised. In addition to
the criteria, each table lists existing standards, refer-
ences of studies used for criterion derivation, and the
estimated bioconcentration factor in aquatic organ-
isms.

In Table 2 criteria for arsenic and benzene have
been derived directly from available human car-
cinogenic data (57-60). Neither compound has been
shown to produce carcinogenic response in ex-
perimental animals. The criterion for vinyl chloride
has been derived from the carcinogenic data on mice

and rats (61) by using the linear (one-hit) model and
correlated with reported human occupational ex-
posure on the incidence of hemangiosarcoma
(62-65). Vinyl chloride does not appear to be of sig-
nificance in water media with the exception of efflu-
ents from vinyl chloride and poly(vinyl chloride)
plants.

Table 3 summarizes several criteria for heavy
metals where the data base used for criterion deriva-
tion was chronic toxicity in the case of cadmium
(66-68), lead (69, 70), nickel (71), chromium (72), and
thallium (73) and organoleptic effect in the case of
copper (74) and zinc.
Table 4 lists three chemicals (hexachlorocy-

clopentadiene, acenaphthene, and 2-chlorophenol)
for which the basis for criterion derivation was or-
ganoleptic, i.e., taste and odor (75-77). This ap-
proach was used either because the organoleptic ef-
fects in humans resulted in a lower criterion than
available toxicity data, as was the case for hexa-
chlorocyclopentadiene, or insufficient toxicity data
were available in the literature and taste and odor
studies had to be used.
The chemical compounds listed in Table 5 repre-

sent examples of criteria derived from carcinogenic
responses in experimental animals. In these in-
stances, animal carcinogenic bioassay data were
used for the derivation of water quality criteria. Of
particular interest is the variability of the biocon-
centration factor in aquatic organisms which affects
the final calculated number. Since the exposure fac-
tors used are based on the consumption of two liters
of water daily and 18.7 g of contaminated fish prod-
ucts, any bioconcentration factor above about 100
lowers the final calculation substantially. In the case
of tetrachloroethylene which bioconcentrates in the
edible portion of fish 110 times, the contribution of
the fish products to the total exposure is about 50%o
(2000 ml water vs. 18.7 g x 110 ml/g = 2057 ml water
equivalent). In the case of heptachlor and DDT, the
ingestion of contaminated fish products completely
overshadows the contribution of the exposure from
ingested water.
Examples of criteria based on chronic toxicity

Table 2. Criteria based on carcinogenic response: human data

External
Substance standard Basis BCF Criterion Reference

Arsenic OSHA (airborne): Skin cancer, man (lifetime) 1.0 0.02 ,ug/l. (57)
10 ,ug/m3
TLV: 0.5 mg/m3

Benzene Leukemia, man 6.9 15 ,ug/l. (58-60)

Vinyl chloride 1 ppm Hemangiosarcoma, man, 1.9 517 ug/lI. (62-65)
mice, rats (61)
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Table 3. Criteria for heavy metals

External
Substance standard Basis BCF Criterion Reference

Cadmium EPA, FDA, WHO: Toxicity, chronic human data 17 10 g/Il. (66-68)
10 ,ug/l.

Lead EPA: 50 ,ug/l. Blood lead levels N.U. 50 ,ug/l. (69, 70)
(chronic human data)

Nickel None Toxicity, chronic animal data N.U. 133 ug/l. (71)

Chromium US PHS: 50 Ag1l. Toxicity, chronic animal data 50 ug/l. (72)

Thallium TLV: 0.1 mg/m3 Toxicity, chronic animal data 61 4 ug/I. (73)

Copper NIOSH (air): Organoleptic 1 mg/I. (74)
1 mg/m3 (dust)
0.2 mg/m3 (fumes)
NIOSH (water): 1 mg/I.

Zinc 5 mg/I. Organoleptic N.U. 5 mg/I.

Table 4. Criteria based on organoleptic effects

External
Substance standard Basis BCF Criterion Reference

Hexachlorocyclo- TLV: 0.11 mg/m3 Organoleptic 3.2 1.0 ,Mg/l. (75)
pentadiene STEL: 0.33 mg/m3

Acenaphthene None Organoleptic 890 20 Mg/l. (76)

2-Chlorophenol None Organoleptic 0.3 ,ug/l. (77, 78)

Table 5. Criteria based on carcinogenic response: animal data

External
Substance standard Basis BCF Criterion Reference

2,4-Dinitrotoluene TLV-TWA: 1.5 mg/m3 Fibroadenomas of the subcutaneous 5.5 0.74 Mug/I. (79)
ulcerated tissue and inanition, rats

Chloroform NIOSH: 2 ppm Hepatocellular carcinomas, mice 14 2.1 Ag/I. (80)

Carbon tetrachloride Liver tumors, mice 69 2.6 ug/l. (81)

Tetrachloroethylene USA: 670 mg/m3 Hepatocellular carcinoma, mice 110 2.2 Mug/l. (82)
USSR: 1 mg/m3

Heptachlor OSHA: 500 ,ug/m3 Liver carcinoma, mice 5,200 0.23 Mug/I. (83)
NAS: 4. x 10- MAg/l.
(lifetime cancer risk)

DDT OSHA: 1 mg/m3 (skin) Liver tumors, mice 39,000 9.8 x 10-7 mg/I. (84)
EPA: 0.001 Ag/lI. (water) (9.8 x 10-4 MAg/l.)
WHO: 0.005 mg/kg (ADI)

data using the threshold assumption are listed in
Table 6. For ethylbenzene and chlorinated naphtha-
lenes, Threshold Limit Values (TLV) were used,
since the literature reports did not contain adequate
studies on chronic toxic effects following ingestion.
The Stockinger and Woodward model was used as
shown in Table 7 with appropriate safety factors
added as recommended by the NAS publication (26).

For some compounds, the scientific review com-

mittees were unable to discover sufficient data from
which a criterion could be calculated. In those cases

criteria were not proposed. Examples of these
chemicals are 2,4-dimethylphenol, antimony,
chloromethyl methyl ether, and the 8 and e isomers
of hexachlorocyclohexane.
The chemicals listed in Tables 2-7 are examples of
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Table 6. Criteria based on chronic toxicity

External
Substance standard Basis BCF Criterion Reference

Pentachlorophenol TLV: 0.5 mg NaPCP/m3 Animal data 58 140 ug/l. (85)
NCR: 0.021 mg PCP/l.

Endosulfan NAS: 0.003 ug/lI. Animal data 28 100 ,ugfl. (86)

Table 7. Criteria derived from TLV

Standard
Substance (TLV) Basis BCF Criterion Reference

Ethylbenzene 100 ppm (435 mg/m3) Stokinger and Woodward model 42 1.1 mg/l = 1.1 ppm (87)
Safety factor = 1000

Chlorinated naphthalenes Stokinger and Woodward model 4800 (88)
Trichloronaphthalenes 3.9 ,ug/l. Safety factor = 100 3.9 Zgll.
Tetrachloronaphthalenes 1.5 ,ug/l. 1.5 ,ug/l.
Pentachloronaphthalenes 0.39 ,ug/l. 0.39 ,ug/l.
Hexachloronaphthalenes 0.15 jug/l. 0.15 jug/l.
Octachloronaphthalenes 0.08 ,ug/l. 0.08 jig/l.

a large number of compounds presently'under re-
view by the EPA's water quality office. Fortunately,
we were able to secure the services ofa large number
of experts who assisted in drafting the assessment
documents and in providing peer review for each
chapter. It is hoped that these documents will be of
use to the scientific community, industry, and regu-
latory agencies.

Summary and Conclusions
Hazard assessment is an inexact process which

requires judgement at the scientific level and careful
public policy decision-making. In this paper, we
have merely attempted to review some of the factors
which must be considered in hazard assessment,
discuss some of the problems in this process, and
describe the methodology currently being used by
the EPA in setting water quality criteria based on
human health effects.
Many problems and questions remain. Our current

approach is hopefully reasonable but may and prob-
ably will require additional reviews and refinements.
This approach may serve as a foundation upon which
a more valid system can be developed as the relevant
information and methods of interpreting this infor-
mation improve. If nothing else, the approach may
serve as a convenient target, stimulating construc-
tive debate and eliciting alternative solutions. It is
imperative that the solutions are sought and found by
the scientific community. They will affect not only
public health but also the quality of our life.
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